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Abstract.

In this research, the phenomenon of flutter and bending in aircraft
wings was studied. In the first part, this phenomenon was defined in
general, the causes leading to it, and the problems resulting from it,
along with an introduction to the importance of studying it and
finding appropriate solutions for it, in addition to some reference
studies about it. In the second part, the explanation of the
phenomenon of aeroelasticity was expanded upon, and a historical
overview of its appearance and the experiments conducted on it was
provided, in addition to the definition of static aeroelasticity, such
as the static aeroelastic behavior of a Fixed Root Flexible Wing {the
lift coefficient for 3D wing and the effect of AR on CI versus angle
of attack graph. The typical effect of a (negative) twist angle on the
lift distribution. As well as the Twist Angle and its effect on the lift
distribution, in addition to Twist and Divergence of the Fixed Root
Flexible Wing. Dynamic Aeroelasticity is also explained: Flutter
instability, Types of Flutter and the effect of spacing and wind speed
on the Flutter. The third part dealt with methods of flutter control
for wings and Panels, explaining some of these methods and the
experiments conducted by researchers in this field. A computer
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simulation conducted on one of the engineering programs
{MATLAB, and ANSYS} of one of the damping methods to
stabilize the aircraft, avoid flutter at different speeds, and determine
the best speed according to the Mach number.

Key Words: flutter, aeroelasticity, Twist, Divergence, Flutter
instability, computer simulation, engineering programs, damping,
aircraft.
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1. Introduction.

Aviation is considered one of the most widely used means of
transportation in the world, and it is one of the methods that require
comprehensive study to achieve the required safety. One of the most
important parts of the aircraft is its wings, which help in flying and
keeping the aircraft in the air for a long period. One of the problems
that can affect the aircraft's wings is flutter and distortion. Flutter is
arguably the most important of all the aeroelastic phenomena and is
the most difficult to predict. It is an unstable self-excited vibration
in which the structure extracts energy from the air stream and often
results in catastrophic structural failure [1,2].

As for the bending in the wings of the aircraft, it is the bending of
the aircraft's wings because of the forces acting on them, and
external factors such as the loads resulting from winds, landing, and
takeoff, in addition to the horizontal pressure forces affecting the
aircraft parts [3, 4, 5].

2. Causes of Flutter and Wing Deformation in Aircraft.
Several factors affect the occurrence of flutter and wing deformation
in aircraft, ranging from the aerodynamic to the mechanical
characteristics of the aircraft. Here are some key factors [5, 6, 7].
Aircraft speed: As the speed of the aircraft increases, the chances of
flutter and wing deformation increase due to the increased pressure
on the wings.

1. Aircraft design: The design of the aircraft may lead to exceeding
the limits of flutter and wing deformation, resulting in aircraft
failure.

2. Aircraft weight: As the weight of the aircraft increases, the
chances of flutter and wing deformation increase due to the
increased load on the wings.

3. Weather conditions: Winds, turbulence, and turbulent air can
lead to flutter and wing deformation.

3. Reference Studies:

The aeroelastic stability of air-craft wings has been an active project
topic since the beginning of the 19th century, one of the first studies
that dealt with flutter analysis was pre-sented by Bairstow and Fage
[8] describing the investigation into the flutter instability that
occurred in the horizontal tail of the twin-engined Handley Page
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0/400. Goland [9] studied the flutter of a uniform aircraft wing
through integration of the governing differential equations. Goland
and Luke studied the effect of adding wing-tip weights on the flutter
of the wing[10]. The shape of the wing planform is one of the
important factors that derives the performance characteristics of
aircraft. Usually, the planform shape of the wing is a trade-off
between different flight conditions and is not always the optimized
shape for each flight condition. Therefore, the idea of changing the
wing planform in flight to op-timize the shape of the wing in each
flight condition has been proposed [11, 12]. Morphing wings
enhance the performance of the wing by changing the shape of
lifting surfaces using some form of mechanism [11, 12]; however,
any change in the wing planform might affect the aeroelastic
behaveour of the wing. Therefore, the aeroe-lastic stability of such
wings should also be considered in a flight configuration.

4. Dynamic Aeroelasticity.

Dynamic aeroelasticity concerns the interaction between inertia as
it shown in fig 1, elastic, and unsteady aerodynamic forces. This
dynamic problem is more complex than static aeroelasticity, since
vibration of the structure is also involved. Flutter is an important
dynamic aeroelasticity phenomenon [5, 6].

Elastic Axis Center of Gravity

Centre of Lift

Fuselage

Fig 1: Dynamic aeroelasticity

4 Copyright © ISTJ A ginae auball (5 gin
Ayl g o slell 40 sal) dlaall


http://www.doi.org/10.62341/sksp2112

International Scienceand ~ VOlume 36 ) gy pll Al il

Imtrwaational beimrs mad Taviasiags demraal

Jomoky ol Part s ey 2

http://www.doi.org/10.62341/sksp2112

5. Mathematical Model

5.1.models of elastic-flexural wing flutter.

Equations of bending and twisting of a flat wing. The physical
system under consideration is a two-dimensional section of a wing
undergoing pitch and plunge oscillations (plunge), Fig 2. The
inclination angle relative to the elastic axis is denoted by the letter
a (positive when the leading edge is facing upwards). The bend,
denoted by, is positive in the downward direction. The elastic axis
is located at a distance anb from the middle chord of the wing, and
the center of mass is located at a distance X.b from the elastic axis.
Both distances are positive when measured to the trailing edge of
the wing profile.

(7777777774

| &
0.5 ayh
ol b
el 1)

o= ;
2b —

Fig 2: Schematic representation of wing sections with elastic elements

For cubic restoring forces with subsonic aerodynamics, the related
equations for wing deflection.

. .
e | {3 e [
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Where:

m¢: total mass of the main wing and supporting structure

mw: mass of the main wing

Xq: dimensionless distance between the center of mass and the axis
of bending;

I, moment of inertia of the structure

b: mean aerodynamic chord (MAC) of the wing [13, 14, 15]

Cq, Cn: damping coefficients for bending displacement and pitch
angle respectively
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kn(h) and Kq(a): displacement and angular stiffness coefficients of
the wing respectively

ake(a): nonlinear term of the elasticity force, which is determined
by the expression [16].

aka(a) = kio® + koo® (2

In, the elasticity coefficient is taken in the form of
Ka(ot)=koo+Ka10-tka2a?. According to, the aerodynamic terms L, M
(lift and torque respectively) at low frequencies and in subsonic
flight can be expressed using the Theodorsen approximation [13,
14] in the form

L = &pV?b + h+<1 A)ba
—EPTPS | ET\y TAZ v

©)
+ pVZbclBsp +pV?bey, spy
- h 1 a
M = &pV*b cpm, Spi| @+ V+<§—A)bv @)

+ pV2b2Cmy_oSpB + PV 2D Ci_ o SpY

Where:

p: air density

V: flight airspeed

a: relative distance between the elastic axis and the MAC of the
wing (this parameter significantly affects the stability of the system)
Sp: wing span

Cia, Cmo: lift and moment coefficients per unit angle of attack (lift and
moment derivatives with respect to angle of attack)

cip, Cmp: lift and moment coefficients per unit angle of attack along
the trailing edge of the wing

Cry, Cmy: lift and moment coefficients per unit angle of attack along
the leading edge of the wing

Cma-eff, Cmp-eff, Cmy-eff. denote derivatives of the aerodynamic moment
with respect to angles of attack: wing, trailing edge, and leading
edge of the wing respectively. According to [16], the parameters of
this model are defined by the following expressions:
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1
Cmge o = (5 + a) ¢, +2¢m,
1
Crmg_oft = (E + a) g+ 2cmﬁ (5)

1
(E + a) c, + 2cmy

Cmy—eff

Introduce the following notation: ci=pV2bsp, c2=pV2b%s,. Then (3),
(4) take the form

(6)

_ h 1 a
L=C|a+ V+(§_A)bv +c1clﬁ,8+c1clyy

h (1 a
M = Czcma—eﬂ” a+ V"‘ (E - A) bv + CZCmB_eﬁ‘ﬁ (7)

+CCmy,_ ¥
Introducing the state vector xER* as, we rewrite equations (1), (2),

(6), (7).

561 = xz
. 3 i
Xy = Calxl + Canonll X1 + Cdle + Ch1x3 + Ch1X4, + Cﬁlﬂ + CV1y'

: (8)
X3 = X4
- 3
X4 = Cq,Xq + Caponn X1 + Ce, X2 + Ch,X3 + Ch,X4 + 032,8 + ¢y, Y,
Where:
Cal = sztcma—eff + Clmwxabcla - mtkl
Canonll = _mtkz
1 1
Ci; = C2MiCry e 5~ a bv
1 1

+ cymyxqbcy, 5~ alb v CoM; )

Ch, = kpmyxeb
1

Ch, = C2MyCrg_ o v + cymyxabcy, v + cpm,, X, b
Cp, = C2MiCrmy_ o T+ clmwxabclﬁ,
Cy, = Ml T clmwxabcly
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Ca, = —CoMyXebCp o — C1lgCr, + My Xabky
Capyy = MwXabks
1 1
Ci, = —CoMyXagbCry, (E - a) b v
1
—c1lqcy, (E — a) b v + c,my,x,b
Ch, = —knlg
1 1
Ch, = —CoMyXqbCp,_ oy c1lqci, v cpl,
— 10

g, = —czmwxabcmﬁ_ o cllacl[g (10)

Cy, = —czmwxabcmy_ i cilqcy,
As an example, Table 1 shows the values of parameters.
Table 1. Numerical values of model parameters (8)

A —0.6719 cm, —0.1005

B 0.1905 m I, (mwx%.b?+ 0.009039) kg m?

Ca 0.036 kg m?/s Ko(a) 12.77 + 1003a%0?

Ch 27.43  kgls Kn 2844.4 N/m

cla 6.757 me 15.57 kg

clg 3.358 My 4.34kg

cl, —0.1566 Sp 0.5945 m

cm, 0 Xa —(0.0998 + a)

cmg -0.6719 p 1.225 kg/m?®

As a result of calculations according to (5), (9), (10), the parameters
presented in Table 2 are obtained.

Table 2: Parameter values of equations (10) according to [19]

Vv 19.0625 My 4.3400 a —0.6719
Xa 0.5721 cm, —0.1005 b 0.1905

I, 0.0606 Ca 0.0360 ki 12.77

k2 1003 Ch 27.4300 kn 2.844 - 10°
cl, 6.7570 My 15.57 clg 3.3580
cl, —0.1566 Sp 0.5945 CMy, 0
cmg —0.6719 p 1.2250 cme-eff -1.1615

cmp-eff -1.9210 cmy-eff -0.1741 C1 50.4130
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Table 3, continued

Co 9.6037 co —211.39 | canonll —778.5
ca't -0.7076 chy 1'3140534 ' ch'1 12.3153
chr —207.1799 oy —29.7643 caz —9.3225

COtnoni2 23.6498 cas —0.1629 ch, —172.3376
ch2 —2.4678 che —1.5305 2 1.2691

For a wing with uncontrolled edges, the following expressions are
given in [18]:
L = mpb?(h + Va — bad) + 2mpVbQC

(11)
M = mpb? (”“f ~Vb(z-a)a b (G+at)a)+ (12)
2mpb?V (@ +3) QC
Where:

V: speed relative to the undisturbed flow
C: Theodorsen function, and the effective angle of attack Q is
determined by the expression
!
Q=Va+h+ab(§—a> (13)
Using the Wagner function convolution theorem, the following
expression is obtained in [16]

_ [ 0t gy — "9Q() _
Le= [ ctr@edo =@+ [ 20 - oo =
- 0 (14)

T 9 _
= 0o + [ 0@ 2o
0

Based on the Sears approximation [19], the Wagner function is
represented in [20] as

D(t) = ¢y — cre” 2t — cze (15)

where co= 1, ¢1 = 0.165, ¢c2 = 0.0455, c3 = 0.335, ¢4 = 0.3. Using the
Pade approximation [16] for the exponential function, the following
formula is derived in [16]:

VZ
Le = (co — ¢4 — ¢c3)Q(t) + cac4(cq + ¢c3) (7) (16)
+ (c165 + c3¢4)VE
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where are two additional variables of the model state equations,
defined by the following equation (19)

. vz _ V. Vv 1 h
X = =07 X - (c; + c4)3x toat (E_ a)a +5 (17)
Using (14), (16), we obtain equations for lift force and moment as:

L = mpb?(h + Va — bad) + 2mpVb(cy — ¢; — ¢3)Q
+ +2mpV3cyc,(cq + c3)X (18)
+ 2mpV2b(cicy + C3C4)%

Uncontrolled Bending Flutter Model Using Wagner's Function:
In dimensionless form, the equations for uncontrolled bending
flutter are written as follows:

.. 1 1
M = mpb? (bah—Vb(E—a)d—b2(§+a2>d>+
1
+2mpb?V (a + —) (co—c1 —c3)Q
2 (19)
1
+ 2mpbV3 (a + E) cyca(cy +c3)X +

1
+2mpb?V? (a + E) (cicy + c3C4)%

Where:

the symbol "-" denotes differentiation with respect to dimensionless
time.

t: real time, V: air speed.

Where:

natural frequencies of isolated bending and torsional vibrations
respectively.

damping coefficients.

r.: denotes the radius of circular motion relative to the elastic axis.
stiffness coefficients for nonlinear bending and torsional stiffness
respectively.

The external force and moment are denoted by.

m: mass of the wing per unit length.

In [15], it is assumed that, where (1) is the coefficient of the cubic
component of torsional stiffness.

In [16], the cubic nonlinear relationship is also used for , although
in the main part, a linear approximation is also used in [17] (where).
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For incompressible flow, the expressions for, according to [17, 18],
take the form:

C(0) =n(é—apdt + a)
. 1
+ 2 (a(O) +E0) + (E - ah> d(O)) 0(0) +

27Tft o(t—o0)- <02(0) +&(0) + (% — ah) d(a)) do
0
Cy() =7 G 4 ah) (a(O) +E0) + G - ah> d(O)) o (20

+n<%+ah)J:qo(t—a)
- (d(a) +E0) + (% - ah) oz(a)) do

T . . 1 I
+Eah(f - aha) - (E - ah)za ~1g
where the Wagner function is represented by the following John
approximation [16].
To eliminate the integral terms in (19), (20), new variables are
introduced [16, 17]:

t t

wy =j ef1(t=q(g)do, w, =j ef2(t=Dq(g)do

O ¢ O ¢ (21)

w3 =f ef1(t=9¢(g)da, w, =f ef2(t=9¢(g)do
0 0

Then the system (19) takes the form [19]
Coé + 18 + € + c3a + ¢4€ + 5 + CeWy + W, + CgWg
i + +cowy +¢10G(§) = (1) 22)
doé +did +dy¢ +dza + dyé +dsa+dewy + dyw,
+dgw; + dow, + djgM(a) = g(t

Where the functions depend on initial conditions, Wagner functions
and external influences.
Nonlinear restoring forces have the form, with coefficients y, 1, and

the coefficients ci, di, i=0, ...,10 is described as follows expressions
[10]:

1 ap 2 )
C0=1+;,Clzxa_zrszﬁ(l_lpl_lp2)+2((ﬁ (23)

11 Copyright © ISTJ A ginae auball (5 gin
Ayl g o slell 40 sal) dlaall


http://www.doi.org/10.62341/sksp2112

International Scienceand ~ VOlume 36 ) gy pll Al il

:32233? {aﬂf?ﬂ, Part 1 ) I_E:i::] %

http://www.doi.org/10.62341/sksp2112

1
C3 = ;(1 + (1 -2ap)A -, - 1/’2))» Cq
2
= ;(514’1 + &)
= E<1 - =P, + (l - ah) (1Y + Szlliz))
U

Cs
2 1
C6=;£1¢1 1_51(5_%) » C7
2

2 2 2 2
Cg = _;_Agll'bl' Cqg = —I—lgzlpz» Ci0 = (F)

= 2 ——— (&1¥1 + &22)

da = 1—2ah_(1 —4a})(1-p1-) Z(a d
37 our? 2urk V*’ 4=

1+2ah( &, + &9;)
1 + 2a
ds = L1 — 1)
" (24)
_ (1 + 2a,)(1 — 2a,) (Y181 — Pr&3)
2urp?
d6 = — —(1+22232;/}181 (1 Sl (l - ah))v d7 =

(1+2ap)yPs e, 1
urg <1 &2 (_ B ah)>

_ (1 +2a)ef do = (1 + 2ap),€3 d
8 — 2 )y Y9 — 2 » 10
urs urs

Introducing the state vector x € R® with components, and assuming
initially that there are no external forces, the system (22) can be
rewritten as follows [19]:

Mx+ux+Kx+CW(x)+F(x)=0 (25)
Where:
12 Copyright © ISTJ A ginae auball (5 gin
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x=[5al’, W) = I wawswal™s M= [ ], =
[CZ C3]

d, dj 26
K = [C4+C10 ] C= [ Cg C9] (26)
d5+d10 d7 dg do

F(x) = [d10V‘f d10770»’ ] [d107/xf’d1077x33]T

In Cauchy form, system (26) takes the form

Where:

As indicated in (26), if we take the Wagner function in the
expression for @, then the equations for take the form

(X1 = X3
X2 =13
X3 = Xy
Xy =V
) Xg = —&1X5 + X1 27
Xe = —E3Xg + X1 (27)
X7 = —€1X7 + X3
Xg = —&3Xg + X3
v=[V1 V)T =-M1(u-[*2 x]T+K[*x1 x3]T +
CW + F(x)).
Where

v=[v1 V)T =-MT(u-[x2 X4]T +K[*1 x3]T+CW +
F(x)).

As indicated in [30], if we take the Wagner function & =1,
i.e.,y; = Y, = 0 in the expression for @, then the equations for
C.(t), Cpp(t) take the form

C.(0) =n(é —apd + 2¢((2 — 2ap)dt) + 2a
Cu() =3 (ané — (5 +42) @ + (1 + 20, )¢ + (28)
A, (1 = 2ap)d + (1 + 2ap)a)

Then the original aeroelastic system is described as a system of four
first-order differential equations. But in such an approximation, the
second bifurcation phenomenon cannot be detected [19].

Modeling of Bending-Torsion Vibrations of the Wing: As an
example, we present the results of modeling wing bending-
torsion vibrations.
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¢ Model Dynamics Parameters
Based on the data provided in [17, 18], the modeling utilized the
initial parameter values listed in Table 4.

e Simulation Results

The initial value a (0) = 1/57.3 rad=1.0 deg was taken for the
simulation, with the remaining initial conditions assumed to be zero.
The processes of changing the variables a(t), £(t) and the projection
of phase trajectories on the plane (a,), (¢,) are shown in Fig (4). As
can be seen from the graphs, the equilibrium state of the system is
unstable, and a stable limit cycle appears.

Table 4: Resulting Parameter Values for Simulation

Co=1.01 c1=0.255 c2=0.01 c3=0.02
cs=0.00216 cs=0.01216 cs = 0.0001433 c7=0.001407
Cg=—6.832-10°° Co=—0.000603 C10=0.00119
do=1.02 d1=1.015 d2=0 d;=0.04
d4:0 d5:0 d6:0 d7:0
dgz 0 d9 =0 dlo =0.01904
0.2 r X .
0 »\_/\/\A/\
-0.2 : : :
0 50 100 150 200
0.2 . £ ;
0 —\\—g/V\/\/—\—
0.2 ' : :
0 50 100 150 200
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Fig 4: Projections of Phase Trajectories onto the Plane
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5.2.Flutter Suppression:

Passive flutter suppression: In [15], the dependence of the critical
flutter speed of a high aspect ratio wing on the position of the
engines on it is studied. An approximate method of parametric
studies based on the Rayleigh principle is proposed. The rational
position of the engines relative to the main wing axes is determined
using a simplified model in which the mass and stiffness
characteristics of the wing are reduced to the selected section. A
numerical example is given for calculating the critical flutter speed
depending on the position of the engines on the wing.

As noted in [16], passive control strategies for flutter suppression
have a significant advantage over active control strategies in terms
of minimizing useful load and avoiding issues related to sensor and
control surface activation. [16] focuses on passive control strategy,
specifically nonlinear energy absorption (NES), aimed at
suppressing or reducing the amplitude of vibrations of aeroelastic
systems' limit cycle. The system under consideration consists of a
rigid aerodynamic profile elastically mounted on linear and
nonlinear springs.

This wing has two degrees of freedom: vertical translational motion,
called plunge and denoted by 4, and clockwise rotational motion,
called pitch and denoted by 6. The displacement of the mass for the
nonlinear energy absorber relative to the wing is denoted by y.. The
parameters ki(h), ke(6), and kn(y2) are used to represent the stiffness
of bending, twisting, and the energy absorber, respectively. They are
given by the following expressions:

kh(h) = kho + khlh + khz + hZ (29)
kg(e) = keo + kele + k9292 (30)
kn(y2) = knzyzz (31)

In [19], based on the energy approach and the Lagrange formalism,
assuming that y2 is measured from the origin, the following
dimensionless equations of motion for the “paired wing/energy

absorber" system are obtained:
2

i} i o
h+e*fcosb + ﬁ(h +nith? + nih?)
_g? . 5, Gy (32)
+77ﬁ(—}’2—d sin @ + h) +7h

__0o,. L . -
++Cyzv(3’2+d Bcose—h) =-L
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2
) . S
720 + e* cos(0) h + £d*?6 + W(H +1262 +nJ6°)

a? C, .
—f]— d*cosf(—y, — dsind + h)® + —=6 (33)
/& o %4
+ C_yzvd*cos 0(y, +d*0cosf —h) =M
o2
&y, + 1— (y, + d*sin — h)3
Y211 V2 (v2 ! ) | (34)
+ C_yzv(yz +d*6cos® —h) =0
Where:

€. ratio of the energy absorber mass to the total system mass.

o: frequency ratio.

V: reduced velocity.

d: dimensionless position of the energy absorber relative to the
elastic axis.

Nonlinear quasi-steady aerodynamics are used to represent
aerodynamic loads. To find the lift force and moment, expressions
similar to (11) - (13) are used in [19].

The parameters including mass and placement of the passive
absorber, are varied to test its effectiveness in suppressing unwanted
aerodynamic behavior under different conditions. A semi-
quantitative assessment of aerodynamic, structural, and runoff
nonlinearities depending on the type of instability is obtained.
According to the results [16], depending on the mass and position
along the profile, the nonlinear absorber may be more effective in
terms of changing the subcritical bifurcation to supercritical.
However, the change is very limited as the system reverts to
subcritical response with increasing free stream velocity. For the
case where the original system exhibits supercritical behavior, the
results show that the nonlinear absorber can reduce the amplitudes
of the primary tone and bending. However, this reduction is limited
to a very small range of flow speeds above the flutter speed. Results
for the normal form show that the nonlinear absorber has damping
characteristics and, as such, cannot sustain the energy it absorbs
from the aerodynamic airfoil section. This leads to modulated
characteristics of both the aerodynamic section and the nonlinear
absorber. Adding a relatively small mass to the main system,
attached via a linear spring and damper (linear tuned vibration
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absorber, LTVA), significantly improves the stability of the
mechanical system. The use of a purely nonlinear spring in the
absorber increases the absorber's frequency bandwidth, reduces the
vibrations of the limit cycle, and allows avoiding subcritical
bifurcations with stability loss. In [16], a nonlinear tuned vibration
absorber (NLTVA) is proposed, whose restoring force is adjusted
according to the functional form of the nonlinearity of the primary
system. NLTVA is designed to leverage the positive features of both
LTVA and nonlinear absorbers. It is shown in [16] that NLTVA can
compensate for the detrimental effects of nonlinearities in the
primary system, meaning the coupled system exhibits linear
dynamics similar to the same system without structural
nonlinearities. Considering the Van der Pol - Duffing oscillator as
the primary system, an analytical solution in closed form for local
compensation of nonlinearities is obtained. Numerical continuation
methods have shown that compensation is also valid for large
response amplitudes. The configuration with an external store of the
F-16 fighter jet is examined in [19] using a time-domain
aeroelasticity calculation program. The program used an Euler flow
solver with medium accuracy in combination with a linear modal
representation of the structure. A key feature of the program code
was that it allowed the user to specify nonlinear damping profiles.
Four damping profiles were investigated to determine their
influence on the effectiveness of the approach considered for
predicting aeroelastic vibrations of the limit cycle. Damping was
specified as a function of oscillatory response, and the solution
results were compared with flight test responses depending on the
Mach number. Realistic limit cycle vibrations were obtained for
three investigated damping profiles.

6. Results

The results of the calculations according to formulas (34), (35) are
presented in Table 4. The processes of changing the variables a(t),
&(t) and the projection of phase trajectories on the plane (a,), (¢,)
are shown in Fig (4). As can be seen from the graphs, the
equilibrium state of the system is unstable, and a stable limit cycle
appears This is confirmed by the values of the resulting parameters
of the simulation. We recommend studying Reduced Order Models
and Active flutter suppression by linear-quadratic optimal
controllers and Active flutter suppression using variable structure
controllers and adaptive controllers.
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7. Conclusion:

The provides an overview of existing results on elastic bending wing
flutter. Models of elastic bending wing flutter are presented,
including equations for the deflection and twist of a flat wing, The
model for the aerodynamic combination of the airfoil and aileron,
an approximate description of the lift-weight function of converging
wings in an incompressible flow, a model of uncontrolled bending
flutter through the Wagner function, as well as reduced-order
models. The exposition is illustrated with the results of modeling of
bending-torsional wing vibrations. Research on the phenomenon of
elastic bending wing flutter is described, including numerical and
experimental studies. Several approaches to passive flutter
suppression are considered.
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